Aggregation and Grouping Items in Result Matrices

By utilizing the aggregation and grouping features, you can establish groups within the Result Matrix and perform aggregation operations on these groups, such as SUM, COUNT, etc.

Supported Aggregations

  • AVG

  • COUNT

  • MAX

  • MIN

  • SUM

Definition

def groupByData = api.newMatrix() // Definition of result matrix (columns, rows). .withColumns('TextColumn1', 'TextColumn2', 'NumericColumn3', 'NumericColumn4') .withRows(rows) // Property `.withGroupBy` defines that the `TextColumn1` and `NumericColumn3` are used for group by (The order is important). .withGroupBy(['TextColumn1', 'NumericColumn3']) // Property `.withColumnAggregation` defines the values for subtotal rows that will be calculated as SUM. // Values are based on the group by definition (`NumericColumn3`). This definition is optional. // When not used, like e.g. for `TextColumn1`, there will be no aggregation calculated for `TextColumn1`. .withColumnAggregation('NumericColumn3', SUM) // Property `.calculateGroupByData` is an end statement for group definition. // This statement is only used together with `.withColumnAggregation`. .calculateGroupByData()

Static import is required to use a predefined enum with aggregation types.

import static net.pricefx.server.dto.calculation.ResultMatrixGrouping.AggregateFunctionType import static net.pricefx.server.dto.calculation.ResultMatrixGrouping.AggregateFunctionType.AVG import static net.pricefx.server.dto.calculation.ResultMatrixGrouping.AggregateFunctionType.COUNT import static net.pricefx.server.dto.calculation.ResultMatrixGrouping.AggregateFunctionType.MAX import static net.pricefx.server.dto.calculation.ResultMatrixGrouping.AggregateFunctionType.MIN

Examples

Grouping Example

In the following example, we retrieve the data from the Products table and group them by the Business Unit, Product Group, and Size columns.

Code

import net.pricefx.common.api.FieldFormatType def productList = null List<String> fields = ["ProductId", "label", "ProductGroup", "currency", "BusinessUnit", "ProductClass", "Size", "ProductLifeCycle" ] productList = api.find("P", 0, api.getMaxFindResultsLimit(), "ProductId", fields) def columnFormats = [ "ProductId": FieldFormatType.TEXT, "label": FieldFormatType.TEXT, "ProductGroup": FieldFormatType.TEXT, "currency": FieldFormatType.MONEY_EUR, "BusinessUnit": FieldFormatType.TEXT, "ProductClass": FieldFormatType.TEXT, "Size": FieldFormatType.TEXT, "ProductLifeCycle": FieldFormatType.TEXT, ] def rows = productList def resultMatrix = api.newMatrix() .withColumnFormats(columnFormats) .withRows(rows) .withGroupBy(['BusinessUnit']) .withGroupBy(['ProductGroup']) .withGroupBy(['Size']) return resultMatrix

Result

PFUN-22020_Grouping_Example.png
Example of Result Matrix with Grouping

Aggregation Example

In the following example, we retrieve the data from the Product Extensions table. We apply group by Currency column and then aggregate SUM on ListPrice column.

Code

Result

PFUN-22020_Aggregation_Example.png
Example of Result Matrix with Aggregation

 

Found an issue in documentation? Write to us.

Â