/
Example 1 – Simple Data with Header
Example 1 – Simple Data with Header
Setup
Headers are in the dataset.
There are various validation errors.
Validation focuses on data types and the min/max range.
Dataset
sku,label,price
1,BMW,10.35
2,AUDI,20
3,Skoda,10.45
4,Opel,125522
5,,
6,Seat,100 000
7,,10
-8,Peugeot,20
nine,Peugeot,20
Schema
{
"title": "Pricefx data schema for set 1 - cars",
"name": "My Pricefx Schema 1",
"description": "Lorem ipsum",
"fields": [
{
"name": "sku",
"title": "Stock-keeping unit",
"description": "A stock-keeping unit (SKU) is a scannable bar code, most often seen printed on product labels in a retail store. The label allows vendors to automatically track the movement of inventory. The SKU is composed of an alphanumeric combination of eight-or-so characters.",
"constraints": {
"required": true,
"type": "POSITIVE_INTEGER",
"minLength": 1,
"minimum": 1,
"maximum": 100
}
},
{
"name": "label",
"title": "Car label",
"description": "Label of the car. Could be anything.",
"constraints": {
"required": false,
"type": "STRING",
"maxLength": 255
}
},
{
"name": "price",
"title": "Price of the car",
"description": "The price is important.",
"constraints": {
"required": true,
"type": "DOUBLE",
"maximum": 100000
}
}
]
}
Result
result.rows == 9
!result.valid
result.errors.size() == 6
result.errors[0].detail == 'Value 125522 is more than maximum 100000'
result.errors[0].row == 4
result.errors[0].col == 2
result.errors[1].detail == 'Missing value'
result.errors[1].row == 5
result.errors[1].col == 2
result.errors[2].detail == 'Value 100 000 is not Double'
result.errors[2].row == 6
result.errors[2].col == 2
result.errors[3].detail == 'Value -8 is not positiveInteger'
result.errors[3].row == 8
result.errors[3].col == 0
result.errors[4].detail == 'Value -8 is less than minimum 1'
result.errors[4].row == 8
result.errors[4].col == 0
result.errors[5].detail == 'Value nine is not Integer'
result.errors[5].row == 9
result.errors[5].col == 0
IntegrationManager version 5.8.0